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Abstract. An extensive generalization of the ordinary and quasi-eikonal methods is presented for the pp
and p̄p elastic scattering amplitudes, which takes into account in a phenomenological way all intermediate
multiparticle states involving the crossing even and crossing odd combinations of Reggeons. The formalism
in this version involves a maximum of three parameters corresponding to the intermediate states which are
possible in this configuration. The unitarity restriction is investigated and particular cases are discussed. An
interesting result that emerges concerns the Odderon trajectory intercept: we find that unitarity dictates
that this quantity must be below or equal unity unless a very peculiar equality exists between the coupling
of the particles to the Pomeron and the Odderon.

1 Introduction

In phenomenological models for the elastic scattering of
hadrons at high energy, based on perturbative QCD, the
Pomeron is a simple pole in the complex angular momenta
plane, lying at t = 0 on the right of j = 1. This means that
the Pomeron trajectory has an intercept αP (0) = 1 + δP

with δP > 0. In this case, the Pomeron contribution to
the asymptotic total cross section,

σtot
P (s) ∝ (s/s0)δP , s0 = 1 GeV2,

results in a violation of unitarity, due to the restriction set
by the Froissart–Martin bound [1]

σtot(s) ≤ C`n2(s/s0) (C ' 60 mb).

Such a Pomeron – sometimes denoted as supercritical1 –
can only be considered as an input or a Born Pomeron
and must be unitarized. To this aim, the eikonal method
[2] and its generalizations are most often used [3–5].

While the eikonalization procedure is quite standard
for one Pomeron alone (or a group of partners seen as a
whole), the situation is more complicated when, for in-
stance, the Pomeron and other contributors are consid-
ered simultaneously: the problem of the discrimination

a e-mail: desgrolard@ipnl.in2p3.fr
b e-mail: giffon@ipnl.in2p3.fr
c e-mail: martynov@bitp.kiev.ua
d e-mail: predazzi@to.infn.it
1 The critical Pomeron with δP = δcr is a solution of the

Pomeron equation within the Regge field theory [6,7]; in this
theory the supercritical Pomeron has δP > δcr.

of the intermediate states arises. To clarify this, let us
illustrate the procedures using the standard or ordinary
eikonal (OE) model [2] and the more sophisticated quasi-
eikonal (QE) model [3], before we introduce our general-
ized eikonal (GE) model, in the case of the elastic pp and
p̄p elastic scattering.

Consider the separate form of the Born amplitude

Ap̄p
pp,Born(s, t) = a+(s, t)± a−(s, t), (1)

where the crossing even part takes into account the Pome-
ron and the f Reggeon while the crossing odd part takes
into account the Odderon and the ω Reggeon

a+(s, t) = aP (s, t) + af (s, t),
a−(s, t) = aO(s, t) + aω(s, t). (2)

Let the corresponding crossing even and crossing odd in-
put amplitudes in the impact parameter b-representation
be h±(s, b), half the eikonal function χ±(s, b)

h± ≡ h±(s, b) =
1
2
χ±(s, b)

=
1
2s

∫ ∞

0
dqq J0(bq) a±(s,−q2). (3)

Knowledge of the eikonal amplitude in the b-repre-
sentation, H p̄p

pp (s, b), in terms of the Born components,
h±(s, b), is at the basis of the eikonalization procedure
since in all eikonal models, once H p̄p

pp (s, b) is known, its in-
verse Fourier–Bessel transform leads finally to the eikonal
amplitude in the (s, t)-space, Ap̄p

pp,Eik(s, t), to be used in



684 P. Desgrolard et al.: Eikonalization and unitarity constraints

the calculation of the observables:

Ap̄p
pp,Eik(s, t) = 2s

∫ ∞

0
dbbJ0(b

√−t)H p̄p
pp (s, b). (4)

The standard OE amplitude [2] in the impact parame-
ter representation, H p̄p

pp,OE(s, b), is obtained as a sum of
all rescattering diagrams in the approximation for which
there are only two nucleons on the mass shell in any in-
termediate state:

H p̄p
pp,OE(s, b) =

1
2i

∞∑
n=0

∞∑
m=0

(2ih+)n(±2ih−)m

n!m!
− 1

=
1
2i
{exp[2i(h+ ± h−)]− 1}, (5)

where −1 subtracts the term with n = m = 0. This lim-
itation neglects the possibility of taking in consideration
intermediate multiparticle states. In a QE model [3] the ef-
fect of these multiparticle states is taken into account gen-
eralizing in a phenomenological way the various exchange
diagrams. This is realized introducing an additional pa-
rameter λ (λ = 1 corresponds to OE). The eikonalized
amplitude in the b-representation then becomes

H p̄p
pp,QE(s, b) =

1
2iλ

×
( ∞∑

n=0

∞∑
m=0

(λ)n+m (2ih+)n(±2ih−)m

n!m!
− 1

)

=
1

2iλ
{exp[2iλ(h+ ± h−)]− 1}. (6)

However, it is not clear that all intermediate states be-
tween two Pomerons (or one Pomeron and one Odderon
etc.) can be described by the same parameter λ. As soon
as more Reggeons come into the game several different
parameters could be used. There follows a much more in-
volved formalism. From a phenomenological point of view,
it is necessary to note here, as a motivation of generalizing
the actual methods of eikonalization, that the QE method
generally does not lead to a good agreement with pp and
p̄p data [8].

The present paper is a generalization of the QE me-
thod: specifically, we go from a one-parameter formalism
to a three-parameters formalism to eikonalize the pp and
p̄p amplitudes. In Sect. 2, as a first step, we deal with the
case where the three parameters entering in the eikonal-
ization procedure obey a specific relation. In Sect. 3, we
discuss the general three-parameter eikonalized p̄p and pp
amplitudes where the intermediate states between Pome-
ron–Pomeron, Pomeron–Odderon and Odderon–Odderon
exchanges are taken into account. General expressions will
be given in simple, closed analytic form. The constraints
arising from unitarity can then be studied in the cases
where the number of parameters is two or three. Espe-
cially interesting in the latter case is that the Odderon
intercept must be below unity.

2 Eikonalization of the elastic amplitude
with two parameters
describing the intermediate states

2.1 Amplitudes

In the following, we simplify the discussion by using two
Reggeons only with a definite C-parity, which we call for
brevity the Pomeron (P ) and the Odderon (O). Actually
the Pomeron together with the f Reggeon acts as a first
Reggeon P̃ = (P + f) and the Odderon together with the
ω Reggeon acts as a second Reggeon Õ = (O + ω). In
what follows (Sects. 2 and 3) we consider for simplicity
the case of p̄p scattering only (changes for pp are self-
evident); later, we return to the general case by writing
the final analytic amplitudes and discussing the unitarity
constraints.

In the QE model [3], we do not discriminate as to
the intermediate states between P̃–P̃ , Õ–Õ and P̃–Õ.
Releasing this assumption gives rise to a new general-
ized eikonal (GE) model in which the three intermedi-
ate states can be different. We proceed step by step. In
the first step, each intermediate state between the ver-
tices particle–Reggeon–particle is correlated with a quan-
tity which we denote by λi

1/4λk
1/4 (i, k = +,−) where the

positive and energy-independent parameters λi and λk de-
pend on which Reggeons are exchanged to the left and to
the right sides of a given diagram. The (somewhat curi-
ous) 1/4 power is chosen so as to obtain the expressions
λ±h± for the final amplitudes.

In terms of these two parameters, we define the three
coefficients

λ+ = CPP , λ− = COO

and λ0 = CPO = COP , (7)

where the relation
λ2

0 = λ+λ− (8)

has been assumed2.
Such a procedure, roughly speaking, mimics a situation

where the particle–Pomeron–particle and the particle–
Odderon–particle amplitude vertices (g+ and g−) are re-
scaled by a priori different positive constants (λ+

1/2 and
λ−1/2). This means that, formally, we change the coupling
constants of the Reggeons by

g+ →
√

λ+g+ for a pPp-vertex,

g− →
√

λ−g− for a pOp-vertex.

However, this implies that for each diagram, we have now
extra multipliers originating from the vertices of the ex-
treme left and right Reggeons. It is necessary to divide

2 Strictly speaking, we should have used CP̃ P̃ etc. instead of
CPP etc. in (7) to recall that P̃ = P +f and Õ = P +ω but we
decided not to do this; we will ignore this formal complication
throughout the paper.



P. Desgrolard et al.: Eikonalization and unitarity constraints 685

P O P

λ − λ+

λ − λ+ λ− λ+

λ− λ+λ+λ+

λ+ λ+

.  .  .    .  .  .  
 

12
12

12
12

12
12

1
1

12
12

12
12

12
12

12
12

12
12

12
12

12
12

12
12

Fig. 1. A typical rescattering diagram with a Pomeron at both
ends

the contributions of these diagrams by well-defined fac-
tors. There are, in fact, three kinds of rescattering dia-
grams with n Pomerons and m Odderons that one should
consider (1) both the extreme left and the extreme right
Reggeons are P (2) both the extreme left and the extreme
right Reggeons are O (3) the extreme left (right) Reggeon
is P while the extreme right (left) Reggeon is O (or vice
versa). Consequently, the diagrams of the first type must
be divided by λ+, the second ones by λ− and the third
ones by (λ−λ+)1/2.

Consider now each kind of diagrams separately, begin-
ning with the first kind (illustrated in the Fig. 1). We work
out the case for p̄p, but the same procedure applies to the
pp case.

Within the present generalization, the contribution of
all the diagrams (consisting in n Pomerons and m Odd-
erons) is the following:

H[PP ] =
1

2iλ+

∞∑
n=2

∞∑
m=0

(2iλ+h+)n(2iλ−h−)m

× (n + m− 2)!
(n− 2)!m!(n + m)!

. (9)

The factor 1/(n+m)! takes into account the total number
of n + m Reggeons; the other factor (n + m − 2)!/(n −
2)!m! (number of ways to choose m Odderons and n − 2
Pomerons from the n + m − 2 Reggeons) accounts for
all permutations of non-identical Pomerons and Odderons
keeping two Pomerons at the left and right ends of dia-
grams.

Similarly for the other contributions one obtains

H[OO] =
1

2iλ−

∞∑
n=0

∞∑
m=2

(2iλ+h+)n(2iλ−h−)m

× (n + m− 2)!
n!(m− 2)!(n + m)!

, (10)

H[PO] = H[OP ]

=
1

2i
√

λ+λ−

∞∑
n=1

∞∑
m=1

(2iλ+h+)n(2iλ−h−)m

× (n + m− 2)!
(n− 1)!(m− 1)!(n + m)!

. (11)

Defining

H p̄p(s, b) = h+ + h− + H[PP ] + H[OO] + 2H[PO], (12)

the p̄p and the pp two-parameters eikonalized amplitudes
in the GE case in the impact parameter representation
take the final form (see Appendix A)

H p̄p
pp,GE(s, b) = h+ ± h− +

(
h+
√

λ+ ± h−
√

λ−
h+λ+ ± h−λ−

)2

(13)

×
(

e2i(h+λ+±h−λ−) − 1
2i

− (h+λ+ ± h−λ−)
)

.

Recall that, as stressed previously, this result is obtained
in the case of two Reggeons irrespective of whether or
not we consider them as being P and O only or whether
we have grouped them together into the crossing even
P̃ = P + f and the crossing odd Õ = O + ω combina-
tions. Accordingly, we have the definitions (1–3), if the
intermediate states “depend” only on the parity but not
on the specific Reggeon (P, f or O, ω).

A similar compact formula can be obtained in the case
of the so-called generalized U-matrix model [5]. With the
same notation one obtains

H p̄p
pp,GUM(s, b) =

(h+ ± h−)∓ 1
2ih+h−(

√
λ+ −

√
λ−)2

1− 2i(h+λ+ ± h−λ−)
.

(14)
Actually, here we confine ourselves to the simplest case

when the input amplitudes are purely elastic. In the most
general case, we should also introduce other amplitudes
corresponding to different effective couplings at the ex-
treme left and right ends of diagrams when the initial
(or final) state in the corresponding vertex is not a sin-
gle proton (similarly for the “internal amplitudes” inside
the n-Reggeon diagrams). These new types of amplitude
are the analog of those considered in diffraction dissocia-
tion (with not too high effective masses). By integration
and summation over many intermediate states, new ampli-
tudes would be derived by modifying appropriately each
hi and λi. The important difference would be that these
new amplitudes would have different energy independent
parts in their slopes (in agreement with the data) but, for
large s, would reduce to the present amplitudes. We will
not consider this additional complication here.

2.2 Unitarity constraints

The unitarity inequality

|H p̄p
pp (s, b)| ≤ 1 (15)

restricts the admitted values for the parameters λ+ and
λ−.

In Appendix B we briefly discuss the framework of
the input (or Born) amplitudes to be used in the general
scheme in both the (s, t) and (s, b)-representations, ob-
tained the one from the other via a Fourier–Bessel trans-
form. From the formulae of Appendix B, valid at high
energy if the secondary Reggeons are neglected, one sees
that the exponential term in (13) can be neglected because
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h+ becomes mainly imaginary and its modulus increases
with energy. Thus, keeping the main and the next orders
in h−/h+, we obtain∣∣∣∣∣h+ ± h− − h+

(
1± 2

√
λ−
λ+

h−
h+
∓ λ−h−

λ+h+
+

1
2i

1
h+λ+

)∣∣∣∣∣≤ 1,

which is the same as∣∣∣∣∣∣ 1
2iλ+

∓ h−

(
1−

√
λ−√
λ+

)2
∣∣∣∣∣∣ ≤ 1. (16)

If the crossing even (or Pomeron) and the crossing odd (or
Odderon) trajectories are written as

α±(t) = 1 + δ± + α′
±t, (17)

the inequality (16) can be satisfied either if3

λ+ = λ−, and λ+ ≥ 1/2, δ− ≥ 0, (18)

or, when λ+ 6= λ−, if4

λ− is arbitrary, λ+ ≥ 1/2, δ− ≤ 0, (19)

Similar results can be obtained for the two-parameters
Generalized U−Matrix model (GUM) [5] in which case
from (15) unitarity requires

∣∣∣∣∣ (h+ ± h−)∓ 1
2ih+h−(

√
λ+ −

√
λ−)2

1− 2i(h+λ+ ± h−λ−)

∣∣∣∣∣ ≤ 1. (20)

One sees at once that the second term of the numerator
is dangerous for the unitarity restriction (15) because it
dominates at s → ∞ if δ+ > 0 and δ− > 0 and grows
faster than the denominator. In this case, there are three
solutions to prevent violation of unitarity

(i) λ+ = λ−,

(ii) δ− ≤ 0,

(iii) δ+ ≤ 0.

Notice that, compared to the GE, in the GUM we have
a third solution (iii) which is technically possible when
δ− > δ+ in spite of its apparent non-realistic aspect [5].
To see how the above solutions arise we note that when
δ+ > δ− and |h+| → ∞, the only way to satisfy (20) is
when λ+ = λ− and λ+ ≥ 1/2 (the other two solutions
arise similarly, see [5]).

Summarizing, we find that the two-parameters GE mo-
del fulfils the unitarity requirement (15) when

(i) either it reduces to the QE (U -matrix) model with
one parameter (λ = λ+ = λ−), with

λ ≥ 1/2, δ± > 0, (21)
3 When s → ∞ and b is inside the interaction radius ( 0 ≤

b2 < 4α′
+δ+ ln2 s = R2) [10,11], |h−| → ∞ (see Appendix B).

4 No restriction is found on λ−, because, in this case, |h−| →
0 when s → ∞ and 0 ≤ b2 < R2 ( see Appendix B).

Table 1. Summary of unitarity constraints of the
GE and GUM procedures with two λ parameters.
Besides the limitations on the λ± parameters, we
show those on the trajectories in the different cases
together with the asymptotic cross section when the
Pomeron (Odderon) dominates

(i) (ii) (iii)
U -matrix only

λ+ = λ > 1/2 > 1/2
λ− = λ > 1/2 > 1/2
δ+ ≥ δ− > 0 ≤ 0
δ− > 0 ≤ 0 > 0
α′

+ ≥ α′
− ≥ α′

− ≤ α′
−

σpp,pp̄
tot ∝ α′

+δ+`n2s α′
+δ+`n2s α′

−δ−`n2s

(ii) or it satisfies the limitations

λ+ ≥ 1/2, if δ− ≤ 0, δ+ > 0, (22)

(iii) or, finally, it obeys

λ− ≥ 1/2, if δ+ ≤ 0, δ− > 0 (23)

(only for the U -matrix).
These conditions have to be combined with the well-

known Pomeron/Odderon hierarchy [10,11]

δ+ ≥ δ−, α′
+ ≥ α′

−,

for the case (21) and

δ− ≥ δ+, α′
− ≥ α′

+,

for the U -matrix case (23) where α′
± are the slopes of the

linear trajectories for the Pomeron (Odderon). These con-
clusions are shown in Table,1, where in order to emphasize
the differences between the various classes of models, we
give also the asymptotic behaviour of σpp,p̄p

tot (see [5]).

3 Eikonalization of the elastic amplitude
with three parameters

3.1 Contributions to the amplitudes

We consider now the more general case where (8) is not
valid,

λ2
0 6= λ+λ−.

In this case, three different coefficients λ0, λ+, λ− should
be considered. Again, as in Sect. 2, (let us remind P,(O)
means here in fact P̃ , (Õ)) we deal with three types of dia-
grams and corresponding terms of the amplitudes H[PP ],
H[OO] and H[PO]. We start with the first term H[PP ]



P. Desgrolard et al.: Eikonalization and unitarity constraints 687

n-i k
1 2 ik k

P OO O
... ......... . . .

λ+ λ0 λ −

λ+ λ0 λ−
12

121

112

1212

12

12

121

12

1

112

12

1

1

12

12

1

1212

121

1

12

12

Fig. 2. A typical diagram with a Pomeron at both ends in the case when the Odderons are grouped in i cells

(see Fig. 2). There are n Pomerons and m Odderons, dis-
tributed in i cells. The maximal value of i is

n− 1 if m > n− 1
m if m ≤ n− 1.

Suppose that one Odderon is in each of the i cells. Then,
the number of ways to choose i cells from the n − 1 cells
is (

n− 1
i

)
=

(n− 1)!
i!(n− 1− i)!

.

The number of ways to distribute the remaining m − i
Odderons into the already chosen i cells is(

(m− i) + i− 1
m− i

)
=
(

m− 1
i− 1

)
=

(m− 1)!
(i− 1)!(m− i)!

.

Therefore, the total number of diagrams with n Pomerons
and m Odderons (distributed in i cells among the Pome-
rons) is (

n− 1
i

)(
m− 1
i− 1

)
.

For each diagram, as exemplified in Fig. 2, we have
a certain overall factor made of powers of λ+, λ− and λ0
which we now proceed to calculate. If there are
k1, k2, . . . , ki Odderons in the 1st, 2nd, . . . , ith cell, the `th
cell contributes with the factor λk`−1

− . Consequently all the
cells give the factor

λk1−1
− λk2−1

− · · ·λki−1
− = λk1+k2+···+ki−i

− = λm−i
− ,

because k1 +k2 + · · ·+ki = m. In addition, each cell gives
λ2

0; therefore for all the cells we have (λ2
0)

i. Furthermore,
the number of cells without Odderons inserted is n− 1− i
and this gives a factor λn−1−i

+ . Thus, the total factor for
this diagram is

(λ2
0)

iλm−i
− λn−1−i

+ =
1

λ+

(
λ2

0

λ+λ−

)i

λn
+λm

− .

Besides this, the factor 2ih+ corresponds to each Po-
meron amplitude and the factor 2ih− corresponds to each
Odderon amplitude; and remember there are altogether n
Pomeron and m Odderon amplitudes.

Summing everything up, the contribution to the re-
scattering amplitude of all diagrams with Pomerons at

the left and right ends of each diagram has the following
form:

2iλ+H[PP ] =
∞∑

n=2

n−1∑
m=1

m∑
i=1

1
(m + n)!

(
n− 1

i

)(
m− 1
i− 1

)

×
(

λ2
0

λ+λ−

)i

(2ih+λ+)n(2ih−λ−)m

+
∞∑

n=2

∞∑
m=n

n−1∑
i=1

1
(m + n)!

(
n− 1

i

)(
m− 1
i− 1

)

×
(

λ2
0

λ+λ−

)i

(2ih+λ+)n(2ih−λ−)m

+
∞∑

n=2

1
n!

(2ih+λ+)n, (24)

the last term taking into account the diagrams without
Odderons.

The same form but with the replacements h+ ←→ h−
and λ+ ←→ λ− holds for H[OO]. Similarly, one obtains
for the contribution of diagrams with a Pomeron at one
end and an Odderon at the other one

2iλ0H[PO] =
∞∑

n=1

n∑
m=1

m∑
i=1

1
(m + n)!

(
n− 1
i− 1

)(
m− 1
i− 1

)(
λ2

0

λ+λ−

)i

×(2ih+λ+)n(2ih−λ−)m

+
∞∑

n=1

∞∑
m=n+1

n∑
i=1

1
(m + n)!

(
n− 1
i− 1

)(
m− 1
i− 1

)(
λ2

0

λ+λ−

)i

×(2ih+λ+)n(2ih−λ−)m. (25)

3.2 Analytical form of the amplitude

3.2.1 General considerations

It is somewhat surprising that one can obtain a compact
analytical form of the total amplitude. To do this, we begin
by summing over i in the previous expressions. Introduc-
ing

z =
λ2

0

λ+λ−
, (26)

and setting N = m (or N = n− 1) in (24), we obtain

N∑
i=1

(
n− 1

i

)(
m− 1
i− 1

)
zi
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=
z

m

d
dz

m∑
p=1

zp

(p!)2
(1− n)p(−m)p

=
z

m

d
dz 2

F1(−m, 1− n; 1; z)

= z(n− 1)2F1(1−m, 2− n; 2; z),

where (a)b = Γ (a + b)/Γ (a) is the Pochhammer symbol
and the definition of the hypergeometric function 2F1 has
been used in [12]. Similarly, setting N = m (or N = n) in
(25), we get

N∑
i=1

(
n− 1
i− 1

)(
m− 1
i− 1

)
zi = z2F1(1−m, 1− n; 1; z).

Substituting these results we get

2iλ+H[PP ]

= z
∞∑

n=2

∞∑
m=1

xnym

(n + m)!
(n− 1)2F1(1−m, 2− n; 2; z)

+ex − x− 1, (27)

and

2iλ0H[PO] = z
∞∑

n=1

∞∑
m=1

xnym

(n + m)!2
F1(1−m, 1− n; 1; z),

(28)
where

x = 2iλ+h+, y = 2iλ−h−. (29)

We obtain λ−H[OO] from λ+H[PP ] with the replacement
x←→ y.

To perform the remaining summations, we use the fol-
lowing integral representation which defines 2F1(a, b; c; z)
as an analytic function in the z-plane, by means of the
contour integral [13]

2F1(a, b, c; z) =
−iΓ (c) exp (−iπb)

2Γ (b)Γ (c− b) sinπb

×
∮
C

dttb−1(1− t)c−b−1(1− zt)−a, (30)

where

<ec > <eb, |arg(−z)| < π, b 6= 1, 2, 3, . . . ,

and where the integration contour is defined in Fig. 3.

3.2.2 Determination of H[PO]

Consider first H[PO]. Equations (28) and (30) yield

2iλ0H[PO] =
z

2πi

∞∑
n=1

∞∑
m=1

xnym

Γ (n + m + 1)

×
∮
C

dtt−n(t− 1)n−1(1− tz)m−1

0 1

C

Fig. 3. Integration contour in the complex t-plane

=
z

2πi

∮
C

dt

(t− 1)(1− zt)

×
∞∑

n=1

∞∑
m=1

XnY m

Γ (n + m + 1)
, (31)

where we have introduced the t-dependent variables

X = x(t− 1)/t, Y = y(1− zt). (32)

The sum over n and m is easily calculated (see Appendix
C) and one obtains

S(X, Y ) =
∞∑

n=1

∞∑
m=1

XnY m

Γ (n + m + 1)

= 1 +
X

Y −X
eY − Y

Y −X
eX . (33)

Thus (31) splits into three integrals:

2iλ0H[PO] =
z

2πi

∮
C

dt

(t− 1)(1− zt)

×
(

1 +
X

Y −X
eY − Y

Y −X
eX

)
≡ I1 + I2 + I3. (34)

These integrals are easily calculated. There is only one
pole at t = 1 for the first integral, and no pole inside the
contour for the second one. Thus,

I1 =
z

1− z
, I2 = 0. (35)

The integrand in the third integral

I3 = − z

2πi

∮
C

dt

(t− 1)
· tyex(t−1)/t

ty(1− tz) + x(1− t)

has poles at t = 1 and t = t±, where

t± =
1

2yz
(−x + y ±

√
(x− y)2 + 4xyz).

As in the previous case only the pole at t = 1 is in-
side the integration contour. However, in this case the
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integrand has an essential singularity at t = 0 due to
exp (x(t− 1/t)). One can, however, sum the residues over
all the poles outside the contour C (this can be done be-
cause the integrand vanishes at |t| → ∞ faster than 1/|t|).
Thus I3 is obtained from the sum of the residues at t = t−
and t = t+, taken with opposite signs:

I3 = − 1
(t+ − t−)

(
eu+

1− 1/t+
− eu−

1− 1/t−

)
, (36)

defining

u± =
1
2
(x + y ±

√
(x− y)2 + 4xyz).

Collecting (35) and (36), we finally get

2iλ0H[PO] =
z

1− z
+

zxy√
(x− y)2 + 4xyz

(
eu+

u+
− eu−

u−

)
.

(37)

3.2.3 Determination of H[PP ]

Consider now the case of H[PP ]. The contribution of all
diagrams with the Pomerons to the left and right ends of
each diagram has the form (27); we have

2iλ+H[PP ] = z
∞∑

n=2

∞∑
m=1

xnym

(n + m)!
1
m

d
dz

× 2F1(−m, 1− n; 1; z) + ex − x− 1
≡ ex − x− 1 + IPP . (38)

Repeating the arguments given for H[PO], we can rewrite
IPP as

IPP =
z

2πi

∞∑
n=2

∞∑
m=1

xnym

(n + m)!
1
m

d
dz

×
∮
C

dtt−n(t− 1)n−1(1− tz)m (39)

= − z

2πi

∮
C

dt
t

(t− 1)(1− tz)

∞∑
n=2

∞∑
m=1

XnY m

(n + m)!

with the same X, Y (see (32)) and the same contour C
as above (see Fig. 3). The sum over n and m can now
immediately be obtained. One finds

∞∑
n=2

∞∑
m=1

XnY m

(n + m)!
= S(X, Y )− S̃(X, Y ),

where S(X, Y ) was given in (33) and

S̃(X, Y ) =
X

Y
(eY − Y − 1). (40)

The integral (39) can thus be rewritten in the following
form:

IPP = − z

2πi

∮
C

dt
t

(t− 1)(1− tz)

× [S(X, Y )− S̃(X, Y )] ≡ IPP − ĨPP . (41)

Replacing X and Y by their expressions (32), ĨPP be-
comes

ĨPP =
z

2πi

∮
C

dt
x/y

(1− tz)2
(ey(1−tz) − y(1− tz)− 1), (42)

which is zero, because there are no singularities inside the
integration contour. Now we examine IPP , the first inte-
gral in (41); the only difference with the previous [PO]
case (34) is the factor t in the integrand and we may write

IPP = − z

2πi

∮
C

dt
t

(t− 1)(1− tz)
(43)

×
[
1 +

X

Y −X
eY − Y

Y −X
eX

]
≡ I1 + I2 + I3.

We see immediately that the first and the second terms
are

I1 = − z

1− z
, I2 = 0, (44)

while the third term can be rewritten as

I3 =
zy

2πi

∮
C

dt
t2ex(t−1)/t

(t− 1)[ty(1− tz)− x(t− 1)]
. (45)

We always have an essential singular point at t = 0 be-
cause of the exponential. At the same time there are three
poles outside the contour, namely, at t = t−, t = t+ (de-
fined in the previous subsection for [PO]) and at infinity.
Thus, we can expand the contour C at very large distances
from t = 0, take the residues at t = t− and at t = t+ (with
minus sign) and write

I3 = −zyRest=t−f(t)− zyRest=t+f(t) +
zy

2πi

∮
R

dtfas(t).

Here R is a circle of large radius and f(t) is the integrand
in (45):

f(t) =
t2ex(t−1)/t

(t− 1)[ty(1− tz)− x(t− 1)]
.

On the circle of large radius we can approximate f(t) by
its asymptotic form for |t| → ∞, i.e. fas(t) = −ex/tyz.
Thus

zy

2πi

∮
R

dtfas(t) = − ex

2πi

∮
R

dt

t
= −ex.

Collecting this integral and the residues at t = t−, t = t+
we obtain for I3 the following expression:5

I3 = −ex +
t2−ex−x/t−

(t− − 1)(t− − t+)
+

t2+ex−x/t+

(t+ − 1)(t+ − t−)
. (46)

5 It is possible, of course, to obtain this result more exactly
replacing the integration variable in (45) by 1/t. After this
transformation the singularities of interest are inside a new
integration contour.
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Σ +  Σ
P O

 O(z)+
 

 ... ...

Fig. 4. Diagram representation of H(s, b) at z � 1

Taking into account (38) and the expressions for t± we
obtain the final expression for H[PP ]

2iλ+H[PP ] = −x− 1− z

1− z
− x

2
√

(x− y)2 + 4xyz

×
{

(−x + y −
√

(x− y)2 + 4xyz)
eu+

u+

− (−x + y +
√

(x− y)2 + 4xyz)
eu−

u−

}
. (47)

3.2.4 Full eikonalized amplitude

The full eikonalized amplitude (12), is now obtained by
adding the two rescattering contributions found above to
the Born amplitude and using the substitution x ←→ y
to get λ−H[OO] from λ+H[PP ]. Putting everything to-
gether, we finally have the three-parameter eikonalized
amplitudes for the p̄p and pp elastic scattering process:

H p̄p
pp,GE(s, b) =

i
2(λ2

0 − λ+λ−)

{
a + ei(λ+h+±λ−h−) (48)

×
[
−a cos φ± + i

c+h+ ± c−h−
φ±

sinφ±

]}
,

where we have introduced the three constants a and c±
defined as

a = 2λ0 − λ+ − λ−, (49)

c± = λ+λ− − 2λ2
0 − λ2

± + 2λ0λ±, (50)

in terms of the parameters of the model and the functions
(of s and b)

φ± =
√

(λ+h+ ∓ λ−h−)2 ± 4λ2
0h+h− . (51)

3.3 Particular cases

After finding general expressions for the amplitudes, valid
at any z, we investigate some particular cases.

(i) z = 1 or λ2
0 = λ+λ−.

We may use the results of Sect. 3.1 to check the results
of Sect. 2, relative to the two-parameter parameterization.
In fact (9)–(13) directly follow from (27) and (28) if 2F1
is calculated at z = 1 using (30).

(ii) z = 1− ε, |ε| � 1.
It is instructive to derive an expansion of the general

expressions (37) and (47) in terms of the small quantity

ε = 1− z. Consider for example (37) for H[PO]. One can
see that the first term z/(1 − z) and the third one with
exp(u−)/u− have singularities at ε = 0 which cancel each
other. Keeping the zeroth and first powers of ε we obtain
the following result for H[PO] at z ≈ 1

2iλ0H[PO] ' xy

(x + y)2
{
ex+y − x− y − 1

− ε [−x− y − 1

+
xy

2(x + y)2
((x + y)2 + 4(x + y) + 6)

+ ex+y

[
1 +

xy

x + y
− 3xy

(x + y)2

]]}
. (52)

Similarly the singularities at ε = 0 cancel in H[PP ] and
we obtain

2iλ+H[PP ] ' x2

(x + y)2
{
ex+y − x− y − 1

+ε
y

(x + y)2

[
1
2
(x + y)(y2 + xy + 2y − 2x− 4) + 3y

+ ex+y(2x− y − x2 − xy)
]}

. (53)

Using (12) we obtain the full eikonalized amplitude in the
b-representation. Of course at ε = 0 (or z = 1) these re-
sults coincide with the similar expressions of the Sect. 2.

(iii) z � 1 or λ2
0 � λ+λ− (weak coupling limit).

This case is of conceptual interest because it corre-
sponds to a clear separation between the Pomeron contri-
bution and the Odderon one. As a result of this approxi-
mation, we obtain eikonalized Pomeron, eikonalized Odd-
eron and small interference terms proportional, respec-
tively, to z/λ0, z/λ+, z/λ−. This is illustrated in Fig. 4.
The expressions for H p̄p

pp can easily be obtained.

(iv) z � 1 ( strong coupling limit).
This case is the more complicate one to obtain approx-

imate expressions for H p̄p
pp in closed analytical form and we

will not give here the formulae that are in order. Prelim-
inary numerical investigations, however, seem to indicate
that this is the choice that gives the best account of the
data.

3.4 Unitarity constraints

We restrict our considerations to the case

|h−(s, b)| � |h+(s, b)|. (54)
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which is the correct assumption in the high energy region
(at least for 0 ≤ b2 < R2) when the Pomeron dominates
over the Odderon and other Reggeons (see Appendix B).
If we expand the full eikonalized amplitude (48) in terms
of the small complex quantity ε = h−(s, b)/h+(s, b), we
have

φ± ≈ λ+h+

(
1∓ ε

(
λ−
λ+
− 2

λ2
0

λ2
+

))
, (55)

c+h+ ± c−h−
φ±

≈ c+

λ+

[
1± ε

(
c−
c+

+
λ−
λ+
− 2

λ2
0

λ2
+

)]
, (56)

H p̄p
pp ≈

i
2(λ2

0 − λ+λ−)

{
a

+
1
2

(
−a +

c+

λ+

)
e2i(λ+h+±h−(λ2

0/λ+))

− 1
2

(
a +

c+

λ+

)
e±2iλ−h−(1−(λ2

0)/(λ+λ−))
}

. (57)

The second term in the last expression can be neglected
because h+(s, b) is mainly imaginary and |h+| → ∞ when
s→∞ if 0 ≤ b2 < R2 (see Appendix B). We obtain

H p̄p
pp ≈

i
2(λ2

0 − λ+λ−)

{
a− 1

2

(
a +

c+

λ+

)
e±2iλ−h−(1−z)

}
.

(58)
The following comments apply.

(1) If δ− > 0, the unitarity inequality

|H p̄p
pp (s, b)| ≤ 1 (59)

cannot be satisfied unless the factor in front of the expo-
nential in (58) is zero, since | exp(±2ih−λ−(1− z))| → ∞
at s→∞ either for pp or for p̄p. Thus, in general, the only
possibility to preserve the unitarity restriction is δ− ≤ 0.
In this case |h−| → 0 when s → ∞ and 0 ≤ b2 < R2 (see
Appendix B) and consequently

H p̄p
pp (s, b) ≈ i

2

{
2λ0 − λ+ − λ−
λ+λ−(z − 1)

+
(λ+ − λ0)2

λ2
+λ−(z − 1)

}
=

i
2λ+

.

(60)
As a consequence, if δ− ≤ 0 the restriction

λ+ ≥ 1/2 (61)

follows from the unitarity constraint. Let us emphasize
that there are no restrictions on λ− and λ0 so long as
z = λ2

0/λ−λ+ 6= 1.
(2) If

λ0 = λ+, (62)

however, the factor in front of the exponential in (58) van-
ishes and the amplitude can be approximated as

H p̄p
pp (s, b) ≈ i

2

{
2λ0 − λ+ − λ−
λ+λ−(z − 1)

}
=

i
2λ+

(63)

and we find again that (61) is valid irrespective of the sign
of δ−. Finally, if α+(0) > α−(0) (as always assumed to be
the case), the condition (61) can be satisfied if

λ0 = λ+ 6= λ−. (64)

Table 2. Summary of the results of Sects. 2.2,
3.4 for four classes of eikonalized models domi-
nated by the Pomeron, respecting unitarity con-
straints

z = 1 z = 1 z 6= 1 z 6= 1
(QE) (GE) (GE) (GE)

λ+ ≥ 1/2 ≥ 1/2 ≥ 1/2 ≥ 1/2
λ− = λ+ any any any
λ0 = λ+ (λ+λ−)1/2 = λ+ any
δ+ ≥ δ− > 0 ≥ δ− > 0
δ− > 0 ≤ 0 > 0 or ≤ 0 ≤ 0

Table,2 collects the results found here and in Sect. 2.2 con-
cerning the unitarization constraints on the parameters
assuming Pomeron dominance, i.e. σpp,pp̄

tot ∝ α′
+δ+`n2s.

4 Conclusion

First of all, let us remind the reader that we have con-
sidered only an eikonalization procedure rather than a
complete unitarization and that we have analyzed only
the case of elastic scattering. As mentioned at the end of
Sect. 2.1, the case of diffraction dissociation would imply
the insertion of new couplings. With these new effective
couplings, the main difference of the diffraction dissocia-
tion amplitudes derived in analogy with the elastic ones
would be in the energy independent parts of their slopes
(which, in fact, is experimentally quite different). Asymp-
totically, these more general amplitudes have similar be-
haviors and the results from unitarity would remain the
same.

A recent controversy concerns the sign of δ− = δO,
(i.e. of the difference with unity of the Odderon inter-
cept at t = 0). This quantity, (for which indications have
been found long ago [9] that it should be negative) was
initially [16] believed to be positive from QCD calcula-
tions of the Odderon trajectory, but counterarguments
where then given [17] that δ− should actually be negative.
More recently [18], this parameters has been calculated
and found to be negative indeed6. On purely phenomeno-
logical grounds, but with absolute rigor, we can state, in
the more general case of Sect. 3, that δ− must be negative
or null unless the specific equality λ+ = λ0 holds in which
case this sign can also be positive. Of course, nothing pre-
vents a priori such an equality between quantities related
to the coupling of particles to the Pomeron and the Odd-
eron to hold, but it certainly looks like a rather peculiar
relation and should it turn out to be indeed valid, it cer-
tainly would deserve further investigation to understand
its implications.

The main merit of our paper, however, lies in the great
generality of the formalism we have developed leading to
a complete three-parameter eikonalization. In spite of the

6 The latest QCD calculation [19] gives δO = 0.
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apparent complications introduced, it is quite likely that
these are not of a purely abstract interest and, indeed, we
are already exploring its phenomenological implications
in describing all elastic pp and p̄p data simultaneously [8].
The standard eikonal, in fact, is not suitable for a realistic
physical description of the elastic amplitude where two
classes of Reggeons contributions have to be kept: e.g.
the Pomeron (essential to describe the small |t| domain)
and the Odderon (essential to account for the large |t|
domain). This is especially visible when discussing the p̄p
and the pp scattering at high energy. In fact, in this case,
as we have seen, it may be appropriate to group together
the crossing even and the crossing odd combinations P +f
and O+ω but one could also argue that it is not necessary
to eikonalize the secondary Reggeons (because they do not
imply any violation of unitarity) in which case one would
interpret the crossing even and the crossing odd parts as
due simply to the Pomeron and the Odderon.

We believe that the present generalization can be suc-
cessfully applied to a phenomenological description of all
high energy pp and p̄p elastic scattering data where both
the Pomeron and the Odderon contribute. This is under
investigation presently [8].
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Conclusion.

Appendix A Two-parameter amplitude
(Proof of (13))

We consider for example (9) and rewrite

H[PP ] =
1

2iλ+
φPP (x, y),

defining x = 2iλ+h+, y = 2iλ−h− and

φPP (x, y) =
∞∑

k=0

∞∑
m=0

xk+2ym

k!m!(k + m + 2)(k + m + 1)
.

After the substitution y = xu this equation becomes

φPP (x, y) = φ̃PP (x, u)

=
∞∑

k=0

∞∑
m=0

xk+m+2um

k!m!(k + m + 2)(k + m + 1)

which satisfies

φ̃PP (x, 0) =
∂φ̃PP

∂x
(x, 0) = 0

and

∂2φ̃PP

∂x2 (x, u) = ex+xu.

Its integration leads to

φPP (x, y) = x2ϕ(x, y)

with

ϕ(x, y) =
(ex+y − 1)
(x + y)2

− 1
x + y

.

Finally, we obtain

H[PP ] =
x2

2iλ+
ϕ(x, y).

Similarly

H[OO] =
y2

2iλ−
ϕ(x, y),

H[PO] =
xy

2i
√

λ+λ−
ϕ(x, y).

Collecting these results, we derive the final expression (13)
for the impact parameter eikonalized amplitude in the
two-parameters GE procedure.

Appendix B Born Pomeron
and Odderon amplitudes

In this Appendix we give the expressions of the amplitudes
which we use to discuss the unitarity constraints. For sim-
plicity, we consider the specific model known as the Regge
monopole (see below) but, as we will argue, the conclu-
sions are quite model independent. For the same reason
(simplicity), the input crossing even and odd (Born) am-
plitudes entering in (1) are approximated, at high energy,
by the Pomeron and Odderon contributions, respectively:

a+(s, t) = aP (s, t), a−(s, t) = aO(s, t).

These amplitudes (in the (s, t)-representation) are

a±(s, t) = m±s̃α±(t)eb±t

for the monopole. In this equation,

s̃ =
s

s0
e−iπ/2 (s0 = 1 GeV2)

to respect s–u crossing, and linear trajectories α±(t) are
considered:

α±(t) = 1 + δ± + α′
±t.

The well-known unitarity constraints set the Pomeron–
Odderon hierarchy:

α′
+ > α′

−, δ+ > δ−, with δ+ > 0.

With the above choices, the “coupling” m+ is real and
negative while m− is purely imaginary. The optical theo-
rem sets the normalization σtot = (4π/s)=mA(s, t = 0).
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The corresponding amplitudes h± (in the (s, b)-
representation) are readily obtained by the Fourier–Bessel
transform (3), and they are

h±(s, b) =
m±s̃α±(0)

4sM±
e−b2/4M± ,

with

M± = α′
± ln s̃ + b±.

It is easy to show that, for large s values and 0 ≤ b2 <
R2,

∣∣e2iλ+h+
∣∣ ≈ exp

(
m+λ+ cos

(
π
2 δ+

)
2s0α′

+ ln s

(
s

s0

)δ+
)

.

Due to the negative sign of m+ and to the positive sign
of δ+, this quantity goes to zero when s → ∞ (for both
processes, p̄p and pp).

Similarly, for large s values and 0 ≤ b2 < R2,∣∣∣e±2iλ−h−(1−z)
∣∣∣

≈ exp

(
±m̃−(λ+λ− − λ2

0)
2s0α′−λ+ ln s

sin
(π

2
δ−
)( s

s0

)δ−
)

,

(recall that the sign ± distinguishes the p̄p and pp scat-
terings), where we have defined m− = im̃−. One of these
quantities diverges if δ− > 0, irrespective of the sign of
m̃−(λ+λ−−λ2

0). Thus, δ− must be negative (see comment
(1) Sect. 3.4).

Had we chosen a dipole7 instead of a monopole

a±(s, t) = d±s̃α±(t)eb±(α±(t)−1)(b± + ln s̃)

(or a combination of a monopole with a dipole), similar
conclusions would follow.

Appendix C Proof of (33)

We start from the definition of S(x, y) (first line of (33)):

S(x, y) =
∞∑

n=1

∞∑
m=1

xnym

(n + m)!

= xy
∞∑

q=0

yq

Γ (q + 3)

∞∑
p=0

xp

(q + 3)p
,

or [12,14]
7 The difference between a monopole and a dipole is essen-

tially that the amplitude of the latter grows with an additional
power of ln s.

S(x, y) =
xy

2

∞∑
q=0

yq

(3)q
1F1(1; q + 3;x)

=
y

x

∫ x

0
dtety/x(x− t)1F1(1; 2;x− t)

=
y

x

∫ x

0
dt(ex · et(y/x−1) − ety/x)

=
[

x

y − x
ey +

y

x− y
ex + 1

]
= 1 +

xey − yex

y − x
.
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